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I. General

This final report covers work carried out by the principal

investigator and a graduate research assistant at the Department of

Mathematics during the 13 months period from July 1, 1979 to

July 31, 1980 under Contract F49620-79-C-0186.

The progress has resulted in three technical papers listed in

Section II, which will be submitted for publication as soon as

completed.

During the report period, the following people contributed to

the project: Professor James T. Lo and Mr. Sze-Kui Ng.

II. Publications

(1) Transition Probabilities of Homogeneous Markov Processes on

Compact Lie Groups, to appear.

(2) Projecting Homogeneous Markov Processes onto Compact Homogeneous

Spaces, to appear.

(3) Approximation of Brownian Motion Densities on the Three Dimensional

Rotation Group, to appear.

J III. Summary of Progress

An optimal estimation scheme for continuous-time rotational

processes with one degree of freedom was obtained in [1]. The estima-

tion problem for continuous-time rotational processes with three degrees

of freedom turns out to be rather difficult. Many attempts were made

by the P.I. in the past few years on the problem. While these attempts

produced minimal results, many crucial issues have been placed in
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perspective. Because of the theoretical and practical Importance

of the problem, a concentrated effort was finally made during the

report period to study these issues.

(1) Transition Probabilities of Homogeneous Markov Processes on

Compact Lie Groups:

A signal process on SO(3)(the 3-dimensional rotation group) can

be constructed by injecting a 3-dimensional Brownian motion into Accessio~n. iT.r

SO(3) [2). It is known that such a signal process is governed by DT1C T B

a bilinear stochastic differential equation. But how do we comput Just1 :1 :.ti

the transition density for this process? In the SO(2) case, such By.

a transition density has an explicit expression called the folded -tAvatntlility

normal density. It is also called a theta function. Then what is Av_ Lni
Dist .Pi'ca

a general folded normal density or theta function? This question

is answered in a much more general context as follows: I

Let {T (n ) } be a sequence of finite dimensional irreducible unitary
S

representations of a k-dimensional compact Lie group G where T 1.I g

The infinitesimal operators A of T (n)i

(n) iT(n) -.(n) = im -t g i ( t )  ,n ,. .

where {gi ) are k one-parameter subgroups of which the tangent vectors

at the group identity e are orthogonal. There is a neighborhood of e

in which a parameterization x1 (g),..., xk(g) satisfies

T( n ) . exp x ($)An)], VgeG.

These local coordinates {xi(g)) can be extended continuously to the
V
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entire G such that they do not vanish simultaneously except at e.

Let Xi denote the left invariant vector fields corresponding to gi

Hung [3] proved that for a smooth function f and the transition

probability P(t, g, E) of a homogeneous Markov process, the function

u(t, g) ffi ()P(t, g, do) satisfies the Kolmogrov backward equation,
JG

with P(O, e, E) concentrates at e.

k k
'u(t, g) a X .u(t, g) + ka Xiu(t, g)

at i,j=l ij i 3 i

Xx(h)Xiu(t g)dF(h),
lu(t, gh) - u(t, g) - i. g)

for a real vector [al,..., ak], a non-negative definite matrix
k

[aij]ijffi is and a positive measure F on G\{e} such that

ixi2(g)dF(g ) < .J G{e lii l

Our result is that the transition probability P(t, g, E) can be

calculated by using the following fact:

k ki A(n)
Let Cn(t)-expt I a A)A (n) + a A (n)nI Ii =I ij i Aj i i

+ J Tn)- In- l x(g)A (n)dF(g)}
\{e il

and p.- (dim. of T(n))/(the volume of G).
d(1

Under certain conditions, there exists a sequence of functions

f (t, g, a) - Nfr) -, tr T fT (n) C *W
r n.0 n n g a n

Isuch that for heC(G),
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£im Jh(a)f (t, g, a)da fh(a)P(t. g, da)

whereI r <1, X, . 1, ,im ,r 1, n i 0,1,... and Lim N(r) -,0 -- * Go n r_+ C

For example, let us consider G - SO(3) and the Brownian motion

governed by the bilinear Ito equation,

dt -dw dw2
3 21

dX(t) = d -dt -dW 1X(t), X(O) = I
-dw2  dwI  -dt

3
where [Wl, w2, w3 ] is the standard Brownian motion in R . The

transition density p(t, g, a) of the process satisfies

(t, g, a)at

[~ sin$. -E-t, g, 0)] + sip2 (t g asin 30 sin +2 g

2 cos a ry(t g, 0) +

aa
p(O, e, 0) = S(a)

I I I

where g = (a , Y ) and a - (a, y, y). It can be explicitly written
j

as

P~t' CD 2+1 jQ-)t e imal P (cosOl' Ie i
p~,g, I .&2ei~~~ -im

J-0 8F2  m,n=-j

PJ (cos B)e- i n y

where e-MPJ (cos B)e-in is the generalized spherical functions of

order J.
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(2) Projecting Homogeneous Markov Processes onto Compact Homogeneous

Spaces:

The 2-sphere S2, the surface of a ball, is a natural state space

for the directional processes. It is isomorphic to the quotient
s2

space S0(3)/S0(2). A signal process on S can be induced by projecting

2a signal process on S0(3) onto S If the signal process on S0(3)

is Brownian, then what is the transition density of the induced

Brownian motion on S 2? This question is also answered in a general

context as follows:

Let H be a closed subgroup of the Lie group G. Corresponding to

a projection 1:g + Hg from G onto the homogeneous space H\G, there

exists a C mapping s such that EO s = 1. For each s, an element

geG is expressed uniquely as s1 (x)h for some xeH\G and heH. A homo-

geneous process on H\G can be induced by projecting through ia homo-

geneous process on G.

The transition probability P(t, x, B) of the resulting process

on H\G can be calculated by using the following fact:

Under certain conditions, there exists a sequence of functions

Nfr)p r I(n)r (n) (n)*
f (t, xx,y)= r T8 (x)J dgT(y)C n(t)r ~n=O n n  sx;H g  sy

such that for h C(H\G),

tim fh(y)fr(t, x, y)d'p(y) - [ h(y)P(t, x, dy)
•, OD JH\G

where p is an invariant measure on H\G and the other symbols are

defined as in (1).

I _-".7
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For example, the transition density of the homogeneous process

that is the projection of the example in (1) satisfies

x, y) [si L x Y
a:sin 80 Vt I

+ 2 2(t, x, y)
sin 2 3y2

p(O, 0, y) - 6 (y)

where x = (W', 0') and y = (a, 8), the spherical coordinates. It

can be explicitly written as

I k~l 4 (t, x, y) = 2k +I -k(k + 1)t Ik( ',')yn Y,

k-i ai n--k k 2 yY k

where Y - y, ), -k < n < k are the unnormalized spherical

functions of the k-th order.

(3) Approximation of Brownian Motion Densities on the Three Dimensional

Rotation Group:

The transition densities obtained above are very complicated

functions, as illustrated by the explicit expressions for the transi-

tion densities of the simplest possible Brownian motions on SO(3) and

2S .  In order to use them for estimation, a natural question is whether

they can be approximated closely by simpler closed-form functions.

Let us restrict our attention to the density obtained in the

example in (1):

p (a, 0, y) = p(t, e, (a, 0, y))

21 + 1 -oL(t + 1) e- m(a + Y )  (Cos)Z 80 si •m
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It can be approximated closely by

(,, y) = 2ack(k COs + k cos (a +y)

27 k c o s dt
C0 (k) = Je d

(~k) = ek CSda
i "0

1 -20
where k is determined by coth k -- = e Let the Fourier series

expansion of pk be

Pk(a, , Y) = 2 1 tr T/)C*(k)

k X=0 872

where CP(k) (C2(k)J is a U + 1 dimensional coefficient matrix.

It is proven that

(a) For each m, £ such that -2 < m < 1,

Ck (k) e - at ( k + 1) + o(.2_j}
mm (1-2]

C k (k)= 0, for n 0 m
mn

(b) Given any C > 0 and positive integer N, there exists a number

K(e, N) such that, for

k > K(e, N), £2 < Nk, and -t < m < Z

IC (k) e --at(1+ 1)<

It is noted that (a) is analogous to those for spheres and circles

obtained in [4] and [5]. (b) is new and stronger than (a). (b) for

spheres and circles is also obtained in our work.
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